8/21/12

CSCE 2100: Computing Foundations 1
The Tree Data Model

Tamara Schneider
Jorge Reyes-Silveyra
Fall 2012

Trees in Computer Science

— Data model to represent hierarchical or nested
structures
* family trees
* charts
 arithmetic expressions

— Certain tree types allow for faster search, insertion
and deletion of elements

Tree Terminology [1]

« nlis called the root node
+ n2and n3 are children of n1
« n4,n5, n6 are children of n2
« n4,n5,and n6 are siblings

« nlisaparentofn2andn3

« n3,n4,n5,and n6 are leaves, since they
do not have any children

« All other nodes are interior nodes

Tree Terminology [2]

« n2,n3,n4,n5,and n6 are
descendants of n1

+ nland n2 are ancestors of n5

« n2istherootofa
sub-tree T

Conditions for a tree

It has a root.
All nodes have a unique parent.

Following parents from any node in the
tree, we eventually reach the root.

Inductive Definition of Trees

Basis: A single node n is a tree.

Induction: For a new node r and existing
trees Ty, To, ..., Tk, designate r as the root
node and make all Tiits children.

Subtrees are often drawn
as triangles. We do not
know the size of each of
the sub-trees. They can be
as small as a single node.

8/21/12

Height and Depth of a tree

The height of the
o treeisthe length of
the longest path

between any node
a) and the root.

The depth (level) of

a node is the length
of the path to the
2 root.

The height of the tree is 3.

3 Thedepth or level of node
n5 is 2. The depth of the
root node is always 0. ’

Expression Trees

* Describe arithmetic expressions
¢ Inductively defined
— Atree can be as little as containing a single
operand, e.g. a variable or integer (basis)

— Trees can be inductively generated by applying
the unary operator “-” to it or combing two
trees via binary operators (+,-, *,/)

N ¢
PANRVANERVAN

Expression Trees - Example

@m @ o)
] DR
‘ (a) For z. (b) For 10 (c) For (z+10)
O @
OF
(d) For (—(z + 10)). (¢) For y. (£) For (y x (—(z + 10))).

Tree Data Structures

* In C we can define a structure, similarly to linked
lists.
— use malloc to allocate memory for each node
— nodes “float” in memory and are reached via

pointers

* In C++ we can also use classes to represent the
individual nodes (and we will for this class)

* Trees can also be represented by arrays of
pointers

Trees as “Array of Pointers” using Classes

const int MAX CHILDREN = 10;

class CTree({
private:
CTree* m_pChild[MAX_ CHILDREN];
int m_nData;
public:
CTree (int data);

}i

o Each node contains data
o Each node contains an array of pointers to its children

o Each child is represented by a tree (sub-tree)

Constructor

#include "tree.h"

CTree: :CTree (int data) {
m_nData = data;
for (int i=0; i< MAX CHILDREN; i++)
m_pChild[i] = NULL;

8/21/12

Trie (Prefix Tree) - Abstraction

Nodes contain “data” and a flag indicating whether a
valid word ends at the node

abstract representation of a
trie

he, hers, his, she

Trie Class

const int MAX CHILDREN = 10;

class CTrie{
private:
CTrie* m_pChild[MAX CHILDREN];
char m_chlLetter;
bool m_bIsWord;
public:
CTrie (char letter, bool isWord);

Trie Constructor

#include "trie.h"

CTrie::CTrie(char letter, bool isWord) {
m_chLetter = letter;
m_bIsWord = isWord;
for (int i=0; i< MAX_ CHILDREN; i++)
m_pChild[i] = NULL;

Trie (Prefix Tree) - Data Structure

] e .

= = What value for
e MAX_CHILDREN do
T [-

you expect?

. 1 Are arrays of
o e T — =" pointersa space

- : efficient choice?
g

Leftmost-Child-Right-Sibling Abstraction

* Use a linked list instead of an array.
* A parent only points to the first of its children

D)

{ @ } children of n1
.
! Dama®) @ child of n4

| S

children of n2

Leftmost-Child-Right-Sibling Data Structure

| class CTree{

private:

| CTree* m_pLmostChild;
[TT0] [x 0] CTree* m_pRSibling;

L1= g - L1 int m_nData;

public:

|| 1 1] CTree (int data);

8/21/12

Recursion on Trees

Recursion is “natural” on trees, since trees
are recursively defined.

&

() General form of a tree.
F(n)
{

action Ao;

Flex)s
action Ag;

Order of Recursion

Tree Traversal: Preorder

List a node the first
time it is visited

nl, n2, n4,n5, n6,
n7,n8,n3

For expression
trees: results in
prefix ex-pressions,
e.g.

S‘a+b)*c

infix
+abc (infix)

(prefix)

Tree Traversal: Postorder

List a node the last time it is
visited.
n4, n5,n7,n8,n6,n2, n3, nl

For expression trees: results in
prefix expressions, e.g.

(a+b)*c (infix
ab+c* (postfix)

Binary Trees

Binary trees can have at most 2 children.

Examples:

6 "o

We distinguish between the left and the right
child. The distinction between them is important!

2

All binary Trees With 3 Nodes

IS

8/21/12

Binary Tree Traversal: Inorder

o List a node after its left
child has been listed and
before its right child has
been listed

o n4,n2,n6,n5,n7,nl, n3

o For expression trees:
results in infix
expressions

Evaluating Expression Trees [1]

class CTree({

private:
CTree* m_pLChild;
CTree* m pRChild;
char m_chOperator;
int m_nData;

public:
CTree (int d, char op);

i

* Forinterior nodes, m_chOperator contains an arithmetic
operator (+,-,*,/)

* For leaf nodes, m_chOperator contains the character i for
integer, and m_nData contains a value

Evaluating Expression Trees [2]

int CTree::eval () {
int vl1, v2;
if (m_chOperator == 'i')return m nData; else{
vl = m_pLChild->eval;
v2 = m_pRChild->eval;
switch (m_chOperator)
case '+': return vl + v2;
case '-': return vl - v2;
case '*': return vl * v2;
case '/': return vl / v2;

Structural Induction

Prove a statement S(T) for atree T
— Basis: Prove the statement for a single node

— Induction: Assume the statement is true for
subtrees T1 T2 ... Tk

Structural Induction - Example [1]

S(T): T: :eval () returns the value of the
arithmetic expression represented by T.

int CTree::eval() {
int vl, v2;
if (m_chOperator == 'i')return m nData; else({
vl = m_pLChild->eval;
v2 = m_pRChild->eval;
switch (m_chOperator) {
case '+': return vl +
case '-': return vl -
case '*': return vl * v2;
case '/': return vl / v2;

v2;

Structural Induction - Example [2]

int CTree::eval(){
int v1, v2;
if (m_chOperator 'i')return m nData; else{
vl = m_pLChild->eval;
v2 = m_pRChild->eval;
switch (m_chOperator) {
case '+': return vl + v2;
case '-': return vl - v2;
case '*': return vl * v2;
case '/': return vl / v2;
}
}
}

Basis: T consists of a single node.
m_chOperator has the value ‘i’ and the
value (stored in m_nData) is returned.

8/21/12

Structural Induction - Example [3]

Induction: If T is not a leaf:

o . + v1 and v2 contain the
A£(m_chOperator == if) values of the left and
return m_nData; A
slse(right subtrees (by
vl = m pL

inductive hypothesis).

* Inthe switch
statement the

N corresponding operator

is applied = correct

value returned. 1

v2 =m
switch
case
case '-':
case '*':
case '/': return v

SAEREEE

Binary Search Trees

* Suitable for so-called dictionary operations:

— insert
— delete
— search

* Binary Search Tree property: All nodes in left

subtree of a node x have labels less than the
label of x, and all nodes in the right subtree of
x have labels greater than the label of x.

Binary Search Tree - Example

Hairy
] ////////// \\\\\\\\\\
Bashful Sleepy
Grumpy Sleazy
Happy

Is this a valid binary search tree in lexicographic order?

Search

Search for element x
— Check root node
* If the root is null, return false
* If x == root->data, return true
 If x > root->data, search in the right subtree (recursively)
* If x < root->data, search in the left subtree (recursively)

Example: Search for 7

Search Implementation

bool CTree::search(int x) {

if (x == m_nData)return true;
if (x < m_nData) {
if (m_pLChild != NULL)

return m_pLChild->search (x);
}
else
if (m_pRChild != NULL)
return m pRChild->search(x);
return false;

}

Insertion

Insert element x
— Check root node
* If the root is null, create a new root node
* If x == root->data, then do nothing

« If x> root->data then insert x into the right subtree
(recursively)

* If x<root->data then insert x into the left subtree
(recursively)

Deletion

Search for element x
* If x does not exist, there is nothing to delete
* If xis a leaf, simply delete leaf
* If xis an interior node

— Replace by largest element of left subtree
— OR replace by smallest element of right subtree

Deletion is recursive! The node we use to replace the originally deleted
node must be deleted recursively!

What would happen if we replaced node by the smallest element
of the left subtree?

8/21/12

Example: Insert 8,5, 2,7,9, 3,2,10

Example: Delete 4

Priority Queues

* The elements of a priority queue have priorities.

If an element with a high priority arrives, it
passes all the elements with lower priorities.
— e.g. Scheduling algorithms in operating systems
make use of priority queues.
* Priority queues are often implemented using
heaps, a type of partially ordered tree (POT).

A node must have a greater value than its children.

A heaf) is always complete: all levels except the last level are
completely filled.

Heaps are usually implemented via arrays.

Array Representation of Heaps

/1 2 3 4 5 6 7 8 9 1011 12
A[8] A[9] A[10] A[11] A[12]

19 17 14 17 8 10 7 |5 2 |4 7 3

For a node A[i], we find its left child at A[2i] and A[2i+1].
Example: Children of the node A[5] are A[2*5] and A[2*5+1].

Priority Queue Operations: Insert [2]

Bubble Up: Compare with
parent and exchange, if the
parent is smaller.

Priority Queue Operations: Deletemax [1]

The element with the highest priority will be
served first and therefore, will be removed first.

8/21/12

Priority Queue Operations: Insert [1]

Insert into the last level using the
first available spot. If the last level
is full, create a new level. “

Priority Queue Operations: Insert [2]

Bubble Up: Compare with
parent and exchange, if the

parent is smaller. 4

Priority Queue Operations: Deletemax [2]

The element with the highest priority will be
served first and therefore, will be removed first.

The root node must be
replaced. We choose
the rightmost node of
the last level. “

8/21/12

Priority Queue Operations: Deletemax [3]

Bubble Down: Compare with
parent and if one or both of
the children are larger, then
exchange it with the larger

bne of the children.

Priority Queue Operations: Deletemax [4]

Bubble Down: Compare with
parent and if one or both of
the children are larger, then
exchange it with the larger

one of the children.

Priority Queue Operations: Deletemax [5]

Bubble Down: Compare with
parent and if one or both of
the children are larger, then
Exchange it with the larger

bne of the children.

What if we swap it
with the smaller one
of the children? .

Heap Sort

¢ Heapify the array:
Insert elements one by one into an initially
empty MaxHeap.

* Repeatedly call deletemax:
We obtain the elements in a sorted order
from largest to smallest.

* To obtain elements sorted from smallest to
largest, we can use a MinHeap instead and
repeatedly call deletemin.

Priority Queue Operations: Deletemax [6]

Bubble Down: Compare with
parent and if one or both of
the children are larger, then
exchange it with the larger

one of the children.

HeapSort: Example [1]

* Sort2,1,3,4
— Insert elements into heap (Heapify)

- m—

et
‘f*’ Yl

HeapSort: Example [2]

* Sort2,1,3,4

— Deletemax
4
4 3

4030201

8/21/12

Summary Heaps

Highest priority element in the root. Each

node’ s children are smaller than the node itself.

— We have seen “max-heaps”, where the greatest
number is in the root.

— Analogously there are “min-heap”, where the
smallest number is in the root.

Insertion: Add to end and “bubble-up”

Deletemax: Remove root element and “bubble-
down”

Heaps can be used for sorting (HeapSort)

10

