CSCE 2100: Computing Foundations 1
The List Data Model

Tamara Schneider
Jorge Reyes-Silveyra
Fall 2012

8/21/12

Terminology [1]

* Alistis a finite set of 0 or more elements

* All elements in the list are most of the time of the
same type T

* The elements of a list are separated by commas:
(a1, a2, ... an)

— Exception: A string as in a list of characters
may be represented without commas

* Duplicate elements are generally allowed

Review of Terminology [2]

* Length of a list: number of elements in the list
— The empty list is represented by () or &

e The first list element is called head
— The head is a single list element!

* The remainder of the list is called tail
— The tail is a list

Review of Terminology [3]

Sublist: contiguous part of the list from positioni > 1 to
positionj<n

Subsequence: Subset of the elements of a list
preserving the order of their occurrence in the original
list

Prefix: Sublist starting at the beginning of the list (i = 1)
Suffix: Sublist terminating at the end of the list

(i=n)

Example

List of integers: (4,6, 2,5, 2, 8, 3)

* Length of the list: 7

* The head of the listis 4

* The tail of the listis (6, 2, 5, 2, 8, 3)

* (6,2,5)and (4,6, 2, 5) are sublists

¢ The tail is a sublist

* (4,6,5,8)and (2, 2, 3) are subsequences
* (4,6,2,5)and (4, 6) are prefixes

* (2,8,3)and (5, 2, 8, 3) are suffixes

List Operations [1]

Dictionary Operations

— Insertion: Insert an element x anywhere in
the list.

* Ifxis the new head, it is “pushed” onto
the list resulting in (x, a1, a2, ... an)

— Deletion: Delete one occurrence of x
* Ifxis the head: “pop the list”

— Search / Lookup: return TRUE if element is
in the list, FALSE otherwise

List Operations [2]

* Concatenation: concatenating two lists

L=(a1, @2, ... an) and M = (by, by, ... bn) yields LM =

(a1, az, ... an, b1, by, ... bn)
— For the empty list €:

Le=L=¢€L

« first(L), last(L) return first or last element of the list
« retrieve (i, L) returns element at position |
« length(L) returns the length of the list
 isEmpty(L) returns TRUE if the list is empty

8/21/12

Linked List Data Structure

¢ In Cwe can implement a linked list usinga struct
* In C++ we can implement a linked list using 2 classes:
CNode and CLinkedList.

class CNode({
friend class CLinkedList;
private:
int m _nData;
CNode* m_pNext;
public:
CNode (int data) ;

}i

#include "node.h"

class CLinkedList{

private:
CNode* m_pHead;
int m nSize;

public:
CLinkedList () ;
void addNode (int data) ;
void removeNode (int data) ;
bool searchNode (int data);
void printList () ;

Linked List: Search

Check each element in the list until the search
key has been found or the end of the list has
been reached.

search (2);

I return true;

10

Linked List: Deletion

Check each element in the list until the search key has been
found or the end of the list has been reached. If the element
is found redirect the pointer of the previous element.

delete (5);

Linked List: Insertion

Duplicate elements may or may not be
allowed! Find the end of the list. Add a new
element.

insert (2) ;

—>T.3_..§_.2.

Sorted Lists (Represent Dictionaries)

* Elements are maintained in sorted order

* Insertion: Do not insert at the end, but at the
appropriate space

 Deletion: same as “regular” lists

* Search: In average faster; why?

— & A5 4—{ET -]

Array-Based List Implementation

* Create an array of size MAX to keep the list
elements

* Introduce a variable 1ength that keeps track
of the number of elements in the list

0 max-1

length = 4

Sorted Array-Based Lists [2]

* Observation: The left half of the list contains
smaller elements than the right half of the list
* Assume we are searching for x = 43.
— Middle index of list [0;4] = 2 with element 36
—Isx<36? No, so search sublist L[3;4]
— Middle index = floor((3+4)/2) = 3

0 1 2 3 4 max-1
length = 5 v

8/21/12

Doubly Linked Lists

* Each element contains a “previous” pointer and a
“next” pointer.

* When inserting or deleting both pointers must be
updated.

v

v

o|4)°

.|s°

A

'

Sorted Array-Based Lists [1]

* The elements in the list are sorted

* How can we use this to improve the speed of
search (x)?

0 max-1

length = 5

Sorted Array-Based Lists [3]

search(24);

id =
0 1 2 3 4 5 6 L{min;max] L(mi’r’:l+ mazx)/2|

(> [B] [06] 3

[[2a]36] 10:2] 1

Calculate the mid element of the list
 |If the element has been found, return “true”

Otherwise, evaluate left or right side of list
— Left side if x < L[mid]
— Right side if x > L[mid]

8/21/12

Sorted Array-Based Lists [4]

* How long does the search take on an array-
based sorted list?(Running time?)

* What needs to be done to insert elements into
the list?

* How can we delete elements from the list?

Sorted Array-Based Lists [5]

bool bsrch(int x, int L[], int lo, int hi) {
int mid;
if(lo > hi)return false; else{
mid = (lo + hi)/2;
if(x < L[mid])
return bsrch(x, L, lo, mid-1);
else if (x > L[mid])
return bsrch(x, L, mid+1l, hi);
else return true;
}
}

Stacks

* Abstract data type based on list data model
* LIFO (last-in first-out)

» Stack operations
—push (x) puts the element x on top of the stack
push (x) onto (a1, az, ... an)
yields (a1, a2, ... an, X)
— pop () removes the topmost element from stack
pop () from (a1, az, ... an)
yields (a1, a2, ... an-1)

Stack Example - Postfix Expressions [1]

* Many compilers turn infix expression into
postfix expressions.
* Then the postfix expressions can be
evaluated via stacks.
— Reading argument: push onto stack.

— Reading operator: pop 2 elements from stack
and evaluate. Push result onto stack.

Stack Example - Postfix Expressions [2]

* Infix expression: (3 +4)* 2
* Convert to postfix:

[3]4 + 2 =

SymMBOL STACK | ACTIONS
PROCESSED
initial
3
4
+

push 3

4 push 4

pop 4; pop 3
compute 7 =3+ 4
push 7

i 2 3
pop 2; pop T
compute 14 =7 x 2
14 push 14

"o n

2
X

LS
)

Stack Example - Postfix Expressions [2]

— Infix expression: (3+4)*2
— Convert to postfix:

3+2*

SymBOL STACK | ACTIONS
PROCESSED
initial €
3 3 push 3
4 3,4 push 4
! 13 pop 4; pop 3
compute 7=3+4
7 push 7 3
2 7,2 push 2
X € pop 2; pop T
compute 14 =7 x 2
14 push 14

8/21/12

Stack Example - Postfix Expressions [2]

— Infix expression: (3+4)*2
— Convert to postfix:

3 442+

SymMBOL STACK | ACTIONS
PROCESSED
initial €
3 3 push 3
4 3,4 push 4
+ € pop 4; pop 3
compute 7 =3 +4
7 push 7 7
2 7,2 push 2
X € pop 2; pop 7
compute 14 =7 x 2
14 push 14

Stack Example - Postfix Expressions [2]

— Infix expression: (3+4)*2
— Convert to postfix:

34+*

Stack Example - Postfix Expressions [2]

— Infix expression: (3+4)*2
— Convert to postfix:

3 4 + 2 [+]

SymMBOL STACK | ACTIONS
PROCESSED
initial €
3 3 push 3
4 3,4 push 4
+ 13 pop 4; pop 3
compute 7 =3 +4
7| ekt 14
2 7,2 push 2
X € pop 2; pop 7
compute 14 =7 x 2
14 push 14

SYMBOL STACK | ACTIONS
PROCESSED
initial €
3 3 push 3
4 3,4 push 4
+ 13 pop 4; pop 3
compute 7=3+4
7 push 7
2 7,2 push 2
X € pop 2; pop T
compute 14 =7 x 2
14 push 14
Stack Operations
* push (x)
* pop ()

e clear()
Initializes stack to ensure that it is empty

e isFull ()
Although in theory the stack can grow
infinitely, a stack implementation can only
hold only a certain number of elements

Stack Implementation

Option 1: Use arrays.

Option 2: Use an implementation similar to linked
lists with stack elements instead of list nodes.
Since a linked list does not have a size limit,
isFull () can always return false.

#include "node.h"

class CStack({
private:
CNode* m_pTop;
int m nSize;
public:
Cstack () ;
void push (int data);
int pop();
bool isFull();
bool isEmpty();
void clear();

Stacks in Memory Allocation

— What happens if a function is called recursively?
How do we distinguish between the different
occurrences of variables with the same name?

— Each execution of a function is called an
activation.

* Associated objects are stored in activation record

(parameters, return value, return address, local
variables)

8/21/12

How is Runtime Memory Organized? [1]

Code

Static data

Stack

.
1

Heap

Text segment. The
compiled code of your
program in the form of
machine code.

How is Runtime Memory Organized? [2]

Code

Static data Fixed size static data.

Values of certain constants

How is Runtime Memory Organized? [3]

Code

Static data

Stack

\/
1

and external variables used
by the program.

Stack

\
1

Activation records for all
currently live activations.
Records are pushed onto the
stack. A returning function pops
the record. Parameters are also
stored on the stack.

Heap

Heap

How is Runtime Memory Organized? [5]

Code

Dynamically allocated objects

Szt dlatia (usingmalloc, new,etc)

Stack e.g.str = malloc(20);

* int vy;
If no place in the heap with
1* sufficient space is found, heap
size is increased
Heap |}

Example 1 - Multiple Functions [1]

void main () {
int x,y,z;
PO

}

void P () {
int pl,p2;
Q07

}

void Q() {

int ql,92,q93;
}

NG X

main () starts executing: Its
activation space contains space
for variables %, v, and z.

Example 1

- Multiple Functions [2]

void main () {

int ql,q92,93;
}

8/21/12

int x,y,z; i
P ()} G Activation record Z

} for P is pushed

void P(){ onto the stack. pl
int pl,p2; p2
Q)

}

void O () {

Example 1 - Multiple Functions [3]

void main () {
int x,y,z;
PO

}

void P () {
int pl,p2;
}

void Q() {
int ql,92,q93;
}

Q() 7 G ——

Activation
record for Q is
pushed onto
the stack.

NAG X

1
B2

gl
a3

Example 1 -

Multiple Functions [4]

void main () {
int x,y,z;
PO

}

void P() {
int pl,p2;
Q0

}

void Q() {

}

int ql,q92,93;
D ——

N X

1
B2

Q returns and its
activation record
is popped off the

stack.

Example 1 - Multiple Functions [5]

void main () {
int x,y,z;
PO

}

void P () {
int pl,p2;
Q07

void Q() {
int ql,92,q93;
}

I e ——

P returns and its
activation record
is popped off the
stack.

NG X

Example 1 - Multiple Functions [6]

void main () {
int x,y,z;
PO

} —

void P () {
int pl,p2;
Q0 ;

}

void Q() {

int ql,q92,93;
}

Once main finishes,

its activation record
is popped off the
stack leaving it
empty.

Example 2 - Recursive Function [1]

else

int factorial (int n) {
if(n <= 1)return 1;

return n*factorial (n-1);

fact(4);

The function call fact (4) resultsin
the creation of an activation record
that is pushed onto the runtime stack.

fact

Example 2 - Recursive Function [2]

int factorial (int n) {

8/21/12

Example 2 - Recursive Function [3]

if(n <= 1)return 1;

else n 4
return n*factorial (n-1); fact -

}
n 3
fact(3); fact B

int factorial (int n) {
if(n <= 1)return 1;

For the recursive call to fact (3)
another activation record is pushed
onto the runtime stack.

else n 4
return n*factorial (n-1); fact -

}
n 3
fact(2) ; fact B

For the recursive call to fact (2)
another activation record is pushed

onto the runtime stack. et =

Example 2 - Recursive Function [4]

int factorial (int n) {
if(n <= 1)return 1;

Example 2 - Recursive Function [5]

int factorial (int n) {
if(n <= 1)return 1;

else n 4
return n*factorial (n-1); fact -
}
n 3
fact(1) ; fact -
For the recursive call to fact (1) n 2
another activation record is pushed fact -
onto the runtime stack.

n

fact -

else n 4
return n*factorial (n-1); fact -
}

n 3
fact (1) ; fact -
Once the value for fact (1) has been n 2
computed, the value is placed into the fact -

slot that has been reserved for it.
n 1
fact 1

Example 2 - Recursive Function [6]

Example 2 - Recursive Function [7]

int factorial (int n) {
if(n <= 1)return 1;

int factorial (int n) {
if(n <= 1)return 1;
else n 4
return n*factorial (n-1); fact -
}
n 3
fact(2); fact -
Once the value for fact (2) has been n 2
computed, the value is placed into the fact 2
slot that has been reserved for it.

else n 4
return n*factorial (n-1); fact -

}
n 3
fact(3) ; fact 6

Once the value for fact (3) has been
computed, the value is placed into the
slot that has been reserved for it.

8/21/12

Example 2 - Recursive Function [8]

int factorial (int n) {
if(n <= 1)return 1;
else n 4
return n*factorial (n-1); fact 24
}
fact(4);

Once the value for fact (3) has been
computed, the value is placed into the
slot that has been reserved for it.

Queues

* A “regular” queue is an abstract data type
which adds elements to an end and
removes elements from the other end.

* Queues are FIFO lists (first-in first-out)

* Queues can be implemented using linked
lists or arrays.

Queue Operations

* void clear(): remove all the elements

* <type> dequeue(): remove and return element

in front

* void enqueue(e): add element e to end of
queue

* bool isEmpty(): true if queue is empty

* bool isFull(): true if queue is full

Longest Common Subsequence

* Given: 2 lists

* Find: Use the Longest Common Subsequence
(LCS) to find the difference between them

* Recall that a subsequence preserves order

* Example: L1 = abcabba
L2 = cbabac

» LCS = baba or cbba

LCS: The diff Command

* Find the LCS of lines
* The remaining lines have changed

filel .txt file2 .txt

Hello World! Hello World!
This is file one.

diff filel .txt file2.txt
2c2
< This is file one.

> This is file two.

This is file two.

Computing the LCS [1]

* Assume we are comparing prefixes of 2
sequences
— The prefix of the first sequence is of length i:
a1,35,.-3,
— The prefix of the second sequence is of length j:
by,b,,...b;

* The empty string is of length 0.

Computing the LCS [2]

Recursive definition for 2 prefixes of length i and j:
— Basis: i+j = 0
Both of the strings must be € (i=j=0)
LCS(i,j) = LCS(0,0) = 0
— Induction:
1) i=0orj=0 LCS(i,j)=0
2) i>0and j>0and az#b
LCS(i, j) = max(LCS(i,j-1), LCS(i-1,j)
3) i>0andj>0and az=b;
LCS(i, j) = 1 + LCS(i-1,j-1)

8/21/12

Computing the LCS [3]

* Direct implementation from rules would yield
an exponential time algorithm.
* Itis more efficient to keep track of
intermediate results
— Dynamic programming computes small instances
first and stores them

Longest Common Subsequence

¢ Given: 2 lists

* Find: Use the Longest Common Subsequence
(LCS) to find the difference between them
* Subsequence: Subset of the elements of a list
preserving the order of their occurrence in
the original list (not necessarily contiguous)
* Example: L1 = abcabba
L2 = cbabac

» LCS = baba or chba

LCS Example [1]

* Example: x = cbabac and y = abcabba
* Fill matrix row by row

e a2 s e s e L7
0 : T 5 %)

o » T e o oa

Initialize row 0 with 0.

Start each row with O. i=0or j=0

LCS Example [2]

i=1 and j=1
x,;=c and y,=a > X;zy,

2) LCS(i, j) = max(LCS(i,j-1), LCS(i-1,j))
LCS(1,1) = max(LCS(1,0), LCS(0,1)) = max(0, 0) =0

LCS Example [3]

i=1 and j=2
x,;=c and y,=b 2> x;zy,

2) LCS(i, j) = max(LCS(i,j-1), LCS(i-1,j))
LCS(1,2) = max(LCS(1,1), LCS(0,2)) = max(0, 0) = 0

10

LCS Example [4]

i=1 and j=3
x;=c and y;=c 2> x;=y;
o 1 2 3 a5 s 1
o o 0 0 [0 o o
[1 B o 0 0 1
[2 |0
N -
KN -
I -
Le IO

3) LCS(i, j) = 1+ LCS(i-1,j-1)
LCS(1,3)=1+LCS(0,2)=1+0=1

8/21/12

LCS Example [5]

i=1 and j=4
x,;=c and y,=b > x;zy,
o [T T (BT |
o 0 0 [o o o]
[1 B o 0 0 1 1
[2 |0
N -
KN -
[s |8
Le IO

2) LCS(i, j) = max(LCS(i,j-1), LCS(i-1,]))

LCS(1,4) = max(LCS(1,3), LCS(0,4)) = max(1, 0) = 1

LCS Example [6]

Fill in remaining rows accordingly

b ek roo ol
w NN e e ool
wwnn e e ol

a
0
1
2
3
3
)
)

©coooooo
NN N R R OO
W wwN N e o
W wwN N R o

Result: LCS for each pair of prefixes

So how do we recover the actual sequences?
@

Retrieving the LCS [1]

Recovering the LCS: Start at bottom right corner

e oo ol
wn N e e oe ool
wwnN e e ol

a
)
1
2
3
3
4
4

©oooooo
NN N R R OO
wwwN N e o
W wwe N e o

n® T T o

Ifx;=y; Move to (i-1, j-1)
Ifx;#zy; and LCS(i-1,j) = LCS(jj) Move to (i-1,)
Ifx;#y; and LCS(i-1,j) # LCS(j,j) Move to (i,j-1)

4

Retrieving the LCS [2]

i=6, j=7 XgZy, sincec#a
LCS(5,7) = LCS(6,7)

mrrroo ol
wwnN ke ol

a
0
1
2
3
3
|
4

n® T T o

©oooooo
N NN R R OO
[FREVINVEPIR T -
wwwN N e o
W wwN N R o

Ifx;=y; Move to (i-1, j-1)
Ifx;#y; and LCS(i-1,j) = LCS(j,j) Move to (i-1,)
Ifx;#y; and LCS(i-1,j) # LCS(j,j) Move to (i,j-1)

65

Retrieving the LCS [3]

i=5, j=7 xgz=y, sincea=a

b ek rooold

T
0
1
1
1
2
2
3

a
)
1
2
3
3
4
4

o oooooo
NN N R R OO
wwnn e e ol
W wwNN e o

)
1
2
2
.
3
3

6w T o oa

Ifx;=y;, Moveto (i-1,j-1)
Ifx;#y; and LCS(i-1,j) = LCS(j,j) Move to (i-1,j)
Ifx;#y, and LCS(i-1,])#LCS(jj) Move to (ij-1)

11

Retrieving the LCS [4]

i=4, j=6 x,=ys; sinceb=b

3 z G B b 3

0 0) o))) 0
[1] o 0 0 1 1 1 1 1
[2 [o 0 1 1 1 2 2 2
N - B 1 1 1 > 1l : 3
[a B o 1 2 2 2 3 3 3
[s | o 1 2 2 3 3 3 4
[s @ o 1 2 3 3 3 3 4

Ifx;=y; Move to (i-1, j-1)
Ifx;#y; and LCS(i-1, j) = LCS(j,j) Move to (i-1,)
Ifx;#y;, and LCS(i-1, j) # LCS(j,j) Move to (ij-1)

8/21/12

Retrieving the LCS [5]

i=3,j=5 x3#y, sincea#b
LCS(2,5) = LCS(3,5)

[-

m e oo ol
w ook e e ol
wweon e e ol

a
0
1
2
3
3
4
4

o oooooo
NN N R R OO

0

1
|

2

3

3

3

www NN e o

n v oo

Ifx;=y; Moveto (i-1,j-1)
Ifx;#y; and LCS(i-1, j) = LCS(j,j) Move to (i-1,j)
Ifx;#y, and LCS(i-1,j)#LCS(jj) Move to (ij-1)

Retrieving the LCS [6]

i=2, j=5 Xx,=ys sinceb=>b

3 z G 3 3

0 0 o))) 0 0
(1 o 0 0 : Il - 1 1
[2 [o 0 1 1 1 2 2 2
[g o 1 1 1 2 2 2 3
[a B o 1 2 2 2 3 3 3
[s | o 1 2 2 3 3 3 4
[s @ o 1 2 3 3 3 3 4

Ifx,;=y; Move to (i-1,j-1)
Ifx;#y, and LCS(i-1,j)=LCS(jj) Move to (i-1,)
Ifx;#y; and LCS(i-1,j) # LCS(}j) Move to (ij-1)

69

Retrieving the LCS [7]

i=1, j=4 x,;#y, sincec#a
LCS(0,4) # LCS(1,4)

0 b 2 3 0

0 o o o o) 0 0
[1] o 0 o N ! 1 1 1
[2 [o 0 1 1 1 2 2 2
(s o 1 1 1 2 2 2 3
[« | o 1 2 2 2 3 3 3
[s B o 1 2 2 3 3 3 4
[s 0 o 1 2 3 3 3 3 4

Ifx;=y; Moveto (i-1,j-1)
Ifx;#y, and LCS(i-1,j)=LCS(jj) Move to (i-1,)
Ifx;#y, and LCS(i-1,j)#LCS(jj) Move to (i,j-1)

Retrieving the LCS [8]

i=1, j=3 Xx;=y; sincec=c

B e e oo olff
wwnN e e ol

a
0
1
2
3
3
4
4

©oooooo
NN N R RO

w o N e e e ol
W wwN N o
www NN e o

Ifx;=y; Move to (i-1, j-1)
Ifx;#y;, and LCS(i-1,j) = LCS(j,j) Move to (i-1,j)
Ifx;#y; and LCS(i-1,) # LCS(j,j) Move to (i,j-1)

7

Retrieving the LCS [9]
i=0 or j=0 reached

0 z G g b 3

0 0 o o) 0 0 o
1 o 0 0 1 1 1 1 1
[2 [o 0 1 1 1 2 2 2
[s @ o 1 1 1 2 2 2 3
[« | o 1 2 2 2 3 3 3
[s B o 1 2 2 3 3 3 4
[s 1 o 1 2 3 3 3 3 4

12

Retrieving the LCS [10]

Read the sequence

©coooooo
m e e oo ol
N NN R R oo
wwnn e e ol

Select those fields in the path for which x=y;: cbba
To obtain alternate result move (i, j-1) when creating
the path if x; # y; and LCS(i, j-1) = LCS(j,j)

8/21/12

Retrieving the LCS — Preference = Up

When backtracking:
If letters are equal then go diagonal
If letters are not equal
If cell above has same value then go up,
otherwise go left

b

ISR

wowow N
w
N ™

wn e ol

| cbba

m koo ol

a
0
1
1
2
2
3
3

o oooooo
NN N R R OO

Retrieving the LCS — Preference = Left

When backtracking:
If letters are equal then go diagonal
If letters are not equal
If cell left has same value then go left,
otherwise go up
o le a2 s e s e 1

NN e ool
wn ol

baba

—

3 < 3
[)) 0
0 0 1 1
o NN :
1 +
1 2 2
1 2 3
1 3 3

b
0
1
2
2
3
3
3

o oooooo

Summary

Lists: Linked Lists, Sorted Lists, Doubly Linked
Lists, Array-Based Lists

Stacks
Queues
Longest Common Subsequence

13

