9/16/12

CSCE 2100: Computing Foundations 1
Iteration vs. Recursion
Tamara Schneider

Jorge-Reyes Silveyra
Fall 2012

Sorting

Goal: Permute a list of 7z elements, such that they

are sorted in increasing (or decreasing) order
* Example: (4,2,7,3,5,3)
e Sorted list: (2,3, 3,4,5,7)
What type of lists can be sorted?
* “Less than” order must be defined
* Lexicographic order: order on strings
There are iterative and recursive algorithms.

Lexicographic Ordering

 Dictionary, alphabetic ordering
* Compare strings x =X;X,..X,,and y =y, y,..y, .
* We say that if one of the following is true:
= Either is a proper prefix of ,
i.e. m<n and for i=1,2,...,m: x=y, or
= For some i>0, xj:yjfor j=0,2,..,i-1
and x<y;
* What about the empty string €?
¢ Sortbase,ball, mound, bat, glove,
batter

Lexicographic Order Example

ball-base-bat-batter—-glove-mound

ball < base X1=Y 1 X35V X3<V3

base < bat X1=Y1 X7V X3<V3

bat < batter X1=Y1 X5=Y 2 X3=Y3 (proper prefix)
batter < glove x;<y,;

glove < mound X;<y;

Definition: Permutation

* Arearrangement of the elements of an
ordered list

* Each element occurs exactly as many times as
it occurred in the original list.

*Is (4,5, 3, 4) a permutation of (4, 4, 3,5)?
* Is (4, 3, 3, 2) a permutation of (3, 4, 4, 2)?

Definition: Sorting
Operation of converting an arbitrary list

(a1,a2,a3,...an) into a list (b1,b2,bs,...bn), such that

1. (b1,b2,b3,...bn) is in sorted order
2. (b1,ba,bs,...bn) is @ permutation of the original list

9/16/12

Iteration

* Repetition of a mathematical or
computational procedure applied to the
result of a previous application.

* Example: use of looping constructs

* for-statement
* while-statement

Iterative Sorting: Selection Sort

Sort an array of size n in increasing order

A[0] < A[l] < ... < A[n-2] < A[n-1]
Assume the array consists of a contiguous sorted and
contiguous unsorted portion

A[0..1i-1] sorted

A[i..n-1] notsorted

0 i-1 1 i+1 n-1
sorted portion unsorted portion
A[0..1i-1] Ali..n-1]

Iterative Sorting: Selection Sort

At each iteration, add the smallest element of the
unsorted portion to the end of the sorted portion

* smallest element at index small
* exchangeA[i] andA[small]

A[0..1] issortedand A[i+1..n-1] isnot
sorted yet

Iterative Sorting: Selection Sort

Selection Sort - Implementation

void SelectionSort(int A[], int n){
int small, temp;
for (int i=0; i<n-1; i++){
small = i;
for (int j=i+1; j<n; j++)
if (A[j] < A[smalll)
small = j;

temp = A[small];
Alsmall] = A[i];
A[i] = temp;
}
}

Inner Loop of Selection Sort

small = i;
for (int j=i+l; j<n; j++)
if (A[j] < A[small])
small = j;

small = 4

small =5

small =5

small =5

small =8

small = 8

Selection Sort - Framework

9/16/12

#include <stdio.h>

const int MAX=100;
int A[MAX];

void SelectionSort (int A[], int n);

void main () {

int n;

for (n=0; n<MAX && scanf("%d",&A([n]) !=EOF; n++);

SelectionSort (A, n);

for (int i=0; i<n; i++)

printf ("sd\n", A[i]);

Iterative Sorting: Selection Sort

Examples
e Sort[]
e Sort [5]
e Sort[5,4,3,2,1]
e Sort[1,8,4,2,9]

Recursion

* Solution of a problem is obtained by using the
solutions of smaller instances of the problem

* Recursive functions call themselves

* Cleaner code for some applications

Concepts and Definitions

Self-Definition: A concept is defined or built
in terms of itself
* No circularity

* Finite number of steps to smaller cases lead
to base case

Basis Induction:
¢ Test for a basis case
¢ Inductive case

Inductive / Recursive Definitions

Basis rule(s), base case(s)

Inductive rule(s) to build larger instances of
concept from smaller ones

Example: list

e Basis rule: Empty list is a list

* Inductive rule: element followed by a list is a list
Inductive definitions # Proofs by induction!!!

Recursive Definition of Factorial

Basis: 1!1=1
Induction: n! =n x (n-1)!
Example:
5! =5x(5-1)!

=5x4l!
=5x 4 x(4-1)!
5x4x3!
=5x4x3x(3-1)!
=5x4x3x2!
=5x4x3x2x(2-1)!
=5x4x3x2x1!
=5x4x3x2x1 (Basis)

Induction

9/16/12

Recursive Functions

A function that calls itself

* Direct: directly calls itself

* Indirect: a chain of functions calls that
results in calling itself (aka mutual
recursion)

Recursion

Recursion

Recursive Factorial Implementation

Basis: 1! =1.
Induction: n! =n x (n-1)!

int factorial (int n) {
if(n <=1)return 1;
else return n * factorial(n-1);

}

Recursive Definition: Lexicographic Order

Basis:

« e<wforanystringw #¢

« If characters c<d, then for any string w and x: cw < dx
Induction:

If w < x for strings w and x, then for any character
C: cw < cX

bat < batter
base < batter
at < atter
ase < atter
< ftter
se < ftter
< ter

Recursive Definition: Arithmetic Expressions

Basis: Arithmetic expressions

1. Variables

2. Integers

3. Real Numbers

Induction: If E1 and E; are arithmetic expressions, then
the following are also arithmetic expressions:

1. (E1 +E2)

2. (E1-E2)

3. (E1 x E2)

4.(E1/E2)

5. If E is an arithmetic expression, then so is (-E)

Expression Trees

* Expression trees can be used to represent
recursively defined arithmetic expressions

e Example: (x+2)* (5—(a/b))

E

Recursive Sorting: MergeSort

A Divide-and-Conquer Algorithm
Bhreak a problem into subproblems and solve
them

Combine solved subproblems into solution to
problem

Conditions:
« Subproblem must be simpler than the original problem
- After a finite number of subdivisions, a small subproblem
that can directly be solved must be encountered

MergeSort — Recursive Sorting

. S?Iit array at each recursive step into two arrays
of half the size

3 =7 4 1
split / \S.P"t

spllt/ ‘pht spllt/ \S‘pht
3] 4|

MergeSort — Recursive Sorting

Merge two sorted smaller arrays into a larger

array
merg;/ \Qerge

[5-7] =
merg \Qe rge mergy \nerge
3] A B

Recursive Sorting - Merge Sort

void mergeSort (*double A[]) { // assume length is
// power of 2

int n = A.size();

if (n > 1) {
double* B = new double[n/2];
double* C = new double[n/2];
split (A, B, C);
mergeSort(B);
mergeSort(C);
merge(B, C, A);

Summary

Iteration

Iterative Sorting

Recursion

Recursive / Inductive Definitions
Recursive Sorting

