C++ for C

Programmers
(In 20 Steps)

Adapted from
lan Parberry

7/29/12

Contents of This Lecture

1. #include 11. Functions in Structs

2. Stream1/0 12. The Class

3. Variable Declaration 13. Constructors & Destructors
4. Variable Initialization 14. Separating Code & Header
5. Loop Control Variables 15. Static Variables

6. Global Variables 16. Constants

7. Inline Functions 17. Derived Classes

8. Default Parameters 18. Virtual Functions

9. Function Overload 19. Public, Private, & Protected
10. Memory Allocation 20. File I/O

1. #include

* Thereis a new way to #include libraries
(the old method still works although the
compiler may complain).

* The .h extension is not used any more, and
the names of standard C libraries are written
beginning with a c.

* In order for the program to use these libraries

correctly using namespace std; hasto
be added like this:

Include Example

using namespace std;
#include <cmath>
int main () {

double a;
a=1.2;
a = sin(a);

printf ("$£f\n", a);
return 0;

2. Stream Input and Output

Streams Example

using namespace std;

#include <iostream>

int main () {
int a;
char s[100];
cout << "Sample program." << endl;
cout << endl;
cout << "Type your age: ";
cin >> a;
cout << "Type your name: ";
cin >> s;

cout << "Type your name: ";

cin >> s;

cout << endl;

cout << "Hello " << s << ", you're ";
cout << a << " old." << endl;

cout << endl << "Bye!" << endl;
return 0O;

} This is a sample program.

Type your age : 42

Type your name: Arthur
Hello Arthur, you're 42 old.
Bye!

3. Variable Declaration

Variables can be declared any place in the code.

Scope lasts until the end of the block.

7/29/12

int main () {
double a = 0.1415;
a=a+ 3.0;
double c;
c = a/4;
cout << "c contains : " << c << endl;
return 0;

c contains 0.785375

More on Local Scope

* Try to use this feature to make your source
code more readable and not to mess it up.

* Like in C, variables can be encapsulated
between {} blocks.

* Then they are local in scope to the zone
encapsulated between the { and }.

* Whatever happens with such variables inside

the encapsulated zone will have no effect
outside the zone.

4. Variable Initialization

A variable can be initialized by a calculation
involving other variables:

double a = 12 * 3.25;
double b = a + 1.112;

5. Loop Control Variables

C++ allows you to declare the control variable to
be local to a loop:

for(int 1 = 0; i < 4; i++){

}

You may be tempted to use i after the loop. Some
early C++ compilers allow this. Modern ones don’t.

6. Global Variables

A global variable can be accessed even if there is

local variable with the same name.

using namespace std;
#include <iostream>

double a = 128; Local a is 256
int main () { Global a is 128
double a = 256;
cout << "Local a is " << a << endl;

cout << "Global a is " << ::a << endl;
return 0O;

7. Inline Functions

« If a function contains just straight-line code, it can be
declared inline.

¢ This means its code will be inserted everywhere the
function is used. That's somewhat like a macro.

¢ The main advantage is the program will be faster.

* A small drawback is it will be bigger, because the full code
of the function was inserted everywhere it is used.

inline double hypotenuse (double a, double b) {
return sqgrt(a*a + b*b);
}

8. Default Parameters

using namespace std;
#include <iostream>
double test (double a, double b = 7){
return a - b;
}
int main () {
cout << test (14, 5) << endl;
cout << test (14) << endl;
return 0;
yi

7/29/12

9. Function Overload

Different functions can have the same name
provided something allows the compiler to
distinguish between them: number or type of
parameters.

double test(double a, double b) {
return a + b;

}

int test(int a, int b){
return a - b;

}

int main () {
double m = 7, n
int k = 5, p = 3;
cout << test(m, n) << ", " << test(k, p) << endl;
return 0;

}

4;

int main () {
double m = 7, n = 4;
int k = 5, p = 3;
cout << test(m, n) << ", " << test(k, p) << endl;
return 0;

10. Memory Allocation

* The keywords new and delete can be used
to allocate and deallocate memory.

* They are cleaner than the functionsmalloc
and free from standard C.

* new|[] anddelete[] are used for arrays.

double *d;

d new double;

*d = 45.3;

cout << "Type a number: ";
cin >> *d;

el = Wl + 9y
cout << "Result: " << *d <<
delete d;

Type a number: 6
Result: 11

int n = 30;

d = new double[n];

for (int i=0; i<n; i++)
d[i] = i;

delete [] d;

char *s;
s = new char([100];

strcpy (s, "Hello!");
delete [] s;

11. Functions in Structs

7/29/12

struct vector{
double x;
double vy;
double surface () {
double s;
s = xty;
if (s<0)
return s;

int main () {
vector a;
a.x = 3; a.y = 4;
cout << "Surface is " << a.surface() << endl;
return 0;

}
‘Surface is 12

12. The Class

e Aclassisastruct that can keep data
private.

* Only the functions of the class can access
private data.

¢ Datathatisnot private can be made public.

* Here are two examples of a class definition.

1. The first behaves exactly the same way as the
struct example above because the class data x
and y are defined as public.

2. The second keeps x and y private.

class vector{
public:

double x;

double y;

double surface () {
double s;
s = X*y;
if(s < 0) s = -s;
return s;

class vectorl{
private:
double x;
double vy;
public:
double surface () {
double s;
s = x*y;
if(s < 0) s = -s;
return s;

Declaring and Instantiating a Class

vector myvector;
myvector.x = 3.1415;
double s = myvector.surface();

vector* myvector;

myvector = new vector;

myvector -> x = 3.1415;

double s = myvector -> surface();
delete myvector;

Declaring and Instantiating a Class

7/29/12

\

vectorl myvector;
myvector.x = 3.1415;
double s = myvector.surface();

&

vectorl* myvector;

myvector = new vectorl;

myvector -> x = 3.1415;

double s = myvector -> surface();
delete myvector;

13. Constructors and Destructors

* The constructor is automatically called whenever
an instance of a class is created by declaration or
by new.

* The destructor is automatically called whenever
an instance of a class is destroyed by end of
scope or by delete.

* The constructor will initialize the variables of the
instance, do some calculations, allocate some
memory for the instance,... whatever is needed.

* The destructor cleans up afterwards, most
importantly, it must free allocated memory!

class vector2{
private:
double x;
double vy;
char* name;
public:
vector2();

class vector3{
private:
double x;
double y;
char* name;
public:
vector3 (char* s);
~vector3();
}i

name = NULL;

vector3::vector3(char* s) {
x =y = 0;
name = new char[strlen(s)+1];
strcpy (name, s);
}
vector3::~vector3 () {
delete [] name;

}

The Copy Constructor

No Problems.

vector v, w;
v.x = 3; v.y = 2.1;

What We Want

v
Yl
name —>{F @ dn
’ ngggggi I!
vl
name 1 Blo|b

v
T ;Eggééj‘_# Iﬂ
name Flr|le|ld

’ TEE;;;L—% Iﬂ
vl
name Flr|e|d

vector3 v ("Fred");
vector3 w("Bob") ;

What We Get

v

namﬁ‘-’{ Flr|e dn
==

name Blo|b

v
w o= V;
name jF rfe dn
w @
name Blo|b

vector3 v ("Fred");
vector3 w("Bob");

7/29/12

More Later

* We need to override the assignment
operation and write a copy constructor.

* We'll cover this later when we get to more
advanced C++ topics.

* For now, be aware of it as a “gotcha”.

14. Separating Code and Header

using namespace std;
#include <iostream>
class vector{
public:
double myfn () {

}
}
int main () {
vector k;
cout << "Myfn returns: " << k.myfn() << endl;
return 0;

}

Use a Function Prototype

using namespace std;
#include <iostream>
class vector{
public:
double myfn () ;
}i
double vector::myfn () {
//some code goes here
}
int main () {
vector k;
cout << "Myfn returns: " << k.myfn() << endl;
return 0;

}

Main.cpp

Vector.h

using namespace std;

#include <iostream>

#include "vector.h"

int main () {
vector k;
cout << "Myfn returns: " << k.myfn() << endl;
return 0;

class vector({
public:
double myfn () ;
}i

Vector.cpp

double vector::myfn () {

}

Using Multiple Code & Header Files

* To compile: g++ Main.cpp Vector.cpp
* Gotcha: The compiler will get upset if you include
a header file in multiple source code files. Fix:

#ifndef VECTORHEADERFILE
#define VECTORHEADERFILE
class vector{
public:
double x, y;
double myfn () ;
}i

7/29/12

15. Static Variables

v

class vector{
public:
double x,y;
static int s;
}

vector v, w, z;

<
=

[

/|

#endif
void myfn{ void myfn{
int s = 0; static int s = 0;
cout << s <<endl; cout << s <<endl;
st+; S++;
} }
void main () { void main () {
myfn () ; myfn () ;
myfn () ; myfn () ;
myfn () ; myfn () ;
} }

Output Output

16. Constants

#define PI 3.1415928

const double PI = 3.1415928;

17. Derived Classes

* A class can be derived from another class.
* The new class inherits the member variables
and member functions of the base class.

¢ Additional variables and/or functions can be
added.

Base Class Example

class vector{
public:

double x, y;

vector (double a=0, double b=0) {
X =a; y = b;

}

double module () {
return sqgrt (x*x + y*y);

}

Derived Class Example

7/29/12

class trivector: public vector({
public:
double z;
trivector(
double m=0, double n=0, double p=0): vector(m, n){
z = p;

}
trivector (vector a){
X = a.x; y=a.y; z=0;
}
double module () {
return sqrt(x*x + y*y + z*z);

}

18. Virtual Functions

virtual double module () {
return sqrt (x*x + y*y);

vector* vptr; }
trivector t(1,1,1);

vptr = &t;
cout << vptr->module();

19. Public, Private, and Protected

Public: accessible from everywhere.

Private: accessible only from member functions
of the class but not derived classes.

Protected: accessible only from member
functions of the class and derived classes.

20. File Input and Output

using namespace std;

#include <iostream>

#include <fstream>

int main () {
fstream f;
f.open("test.txt", ios::out);
f << "Text output to a file." << endl;
double a = 345;
f << "A number: " << a << endl;
f.close();
return O;

Output File Contents

> cat test.txt
} Text output to a file.

A number: 345

using namespace std;
#include <iostream>
#include <fstream>
int main () {
fstream f;
char c;
cout << "What's inside test.txt?" << endl;
f.open ("test.txt", ios::in);
while (!f.eof ()) {
f.get(c);
cout << c;
}
f.close();
return 0; What's inside test.txt?"
} Text output to a file.
A number: 345

