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1. #include

* Thereis a new way to #include libraries
(the old method still works although the
compiler may complain).

* The .h extension is not used any more, and
the names of standard C libraries are written
beginning with a c.

* In order for the program to use these libraries

correctly using namespace std; hasto
be added like this:

Include Example

using namespace std;
#include <cmath>
int main () {

double a;
a=1.2;
a = sin(a);

printf ("$£f\n", a);
return 0;

2. Stream Input and Output

Streams Example

using namespace std;

#include <iostream>

int main () {
int a;
char s[100];
cout << "Sample program." << endl;
cout << endl;
cout << "Type your age: ";
cin >> a;
cout << "Type your name: ";
cin >> s;

cout << "Type your name: ";

cin >> s;

cout << endl;

cout << "Hello " << s << ", you're ";
cout << a << " old." << endl;

cout << endl << "Bye!" << endl;
return 0O;

} This is a sample program.

Type your age : 42

Type your name: Arthur
Hello Arthur, you're 42 old.
Bye!




3. Variable Declaration

Variables can be declared any place in the code.

Scope lasts until the end of the block.
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int main () {
double a = 0.1415;
a=a+ 3.0;
double c;
c = a/4;
cout << "c contains : " << c << endl;
return 0;

c contains 0.785375

More on Local Scope

* Try to use this feature to make your source
code more readable and not to mess it up.

* Like in C, variables can be encapsulated
between {} blocks.

* Then they are local in scope to the zone
encapsulated between the { and }.

* Whatever happens with such variables inside

the encapsulated zone will have no effect
outside the zone.

4. Variable Initialization

A variable can be initialized by a calculation
involving other variables:

double a = 12 * 3.25;
double b = a + 1.112;

5. Loop Control Variables

C++ allows you to declare the control variable to
be local to a loop:

for(int 1 = 0; i < 4; i++){

}

You may be tempted to use i after the loop. Some
early C++ compilers allow this. Modern ones don’t.

6. Global Variables

A global variable can be accessed even if there is

local variable with the same name.

using namespace std;
#include <iostream>

double a = 128; Local a is 256
int main () { Global a is 128
double a = 256;
cout << "Local a is " << a << endl;

cout << "Global a is " << ::a << endl;
return 0O;

7. Inline Functions

« If a function contains just straight-line code, it can be
declared inline.

¢ This means its code will be inserted everywhere the
function is used. That's somewhat like a macro.

¢ The main advantage is the program will be faster.

* A small drawback is it will be bigger, because the full code
of the function was inserted everywhere it is used.

inline double hypotenuse (double a, double b) {
return sqgrt(a*a + b*b);
}




8. Default Parameters

using namespace std;
#include <iostream>
double test (double a, double b = 7){
return a - b;
}
int main () {
cout << test (14, 5) << endl;
cout << test (14) << endl;
return 0;
yi
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9. Function Overload

Different functions can have the same name
provided something allows the compiler to
distinguish between them: number or type of
parameters.

double test(double a, double b) {
return a + b;

}

int test(int a, int b){
return a - b;

}

int main () {
double m = 7, n
int k = 5, p = 3;
cout << test(m, n) << ", " << test(k, p) << endl;
return 0;

}

4;

int main () {
double m = 7, n = 4;
int k = 5, p = 3;
cout << test(m, n) << ", " << test(k, p) << endl;
return 0;

10. Memory Allocation

* The keywords new and delete can be used
to allocate and deallocate memory.

* They are cleaner than the functionsmalloc
and free from standard C.

* new|[] anddelete[] are used for arrays.

double *d;

d new double;

*d = 45.3;

cout << "Type a number: ";
cin >> *d;

el = Wl + 9y
cout << "Result: " << *d <<
delete d;

Type a number: 6
Result: 11

int n = 30;

d = new double[n];

for (int i=0; i<n; i++)
d[i] = i;

delete [] d;

char *s;
s = new char([100];

strcpy (s, "Hello!");
delete [] s;




11. Functions in Structs
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struct vector{
double x;
double vy;
double surface () {
double s;
s = xty;
if (s<0)
return s;

int main () {
vector a;
a.x = 3; a.y = 4;
cout << "Surface is " << a.surface() << endl;
return 0;

}
‘Surface is 12

12. The Class

e Aclassisastruct that can keep data
private.

* Only the functions of the class can access
private data.

¢ Datathatisnot private can be made public.

* Here are two examples of a class definition.

1. The first behaves exactly the same way as the
struct example above because the class data x
and y are defined as public.

2. The second keeps x and y private.

class vector{
public:

double x;

double y;

double surface () {
double s;
s = X*y;
if(s < 0) s = -s;
return s;

class vectorl{
private:
double x;
double vy;
public:
double surface () {
double s;
s = x*y;
if(s < 0) s = -s;
return s;

Declaring and Instantiating a Class

vector myvector;
myvector.x = 3.1415;
double s = myvector.surface();

vector* myvector;

myvector = new vector;

myvector -> x = 3.1415;

double s = myvector -> surface();
delete myvector;




Declaring and Instantiating a Class
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\

vectorl myvector;
myvector.x = 3.1415;
double s = myvector.surface();

&

vectorl* myvector;

myvector = new vectorl;

myvector -> x = 3.1415;

double s = myvector -> surface();
delete myvector;

13. Constructors and Destructors

* The constructor is automatically called whenever
an instance of a class is created by declaration or
by new.

* The destructor is automatically called whenever
an instance of a class is destroyed by end of
scope or by delete.

* The constructor will initialize the variables of the
instance, do some calculations, allocate some
memory for the instance,... whatever is needed.

* The destructor cleans up afterwards, most
importantly, it must free allocated memory!

class vector2{
private:
double x;
double vy;
char* name;
public:
vector2();

class vector3{
private:
double x;
double y;
char* name;
public:
vector3 (char* s);
~vector3();
}i

name = NULL;

vector3::vector3(char* s) {
x =y = 0;
name = new char[strlen(s)+1];
strcpy (name, s);
}
vector3::~vector3 () {
delete [] name;

}

The Copy Constructor

No Problems.

vector v, w;
v.x = 3; v.y = 2.1;

What We Want

v
Yl
name —>{F @ dn
’ ngggggi I!
vl
name 1 Blo|b

v
T ;Eggééj‘_# Iﬂ
name Flr|le|ld

’ TEE;;;L—% Iﬂ
vl
name Flr|e|d

vector3 v ("Fred");
vector3 w("Bob") ;




What We Get

v

namﬁ‘-’{ Flr|e dn
==

name Blo|b

v
w o= V;
name jF rfe dn
w @
name Blo|b

vector3 v ("Fred");
vector3 w("Bob");
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More Later

* We need to override the assignment
operation and write a copy constructor.

* We'll cover this later when we get to more
advanced C++ topics.

* For now, be aware of it as a “gotcha”.

14. Separating Code and Header

using namespace std;
#include <iostream>
class vector{
public:
double myfn () {

}
}
int main () {
vector k;
cout << "Myfn returns: " << k.myfn() << endl;
return 0;

}

Use a Function Prototype

using namespace std;
#include <iostream>
class vector{
public:
double myfn () ;
}i
double vector::myfn () {
//some code goes here
}
int main () {
vector k;
cout << "Myfn returns: " << k.myfn() << endl;
return 0;

}

Main.cpp

Vector.h

using namespace std;

#include <iostream>

#include "vector.h"

int main () {
vector k;
cout << "Myfn returns: " << k.myfn() << endl;
return 0;

class vector({
public:
double myfn () ;
}i

Vector.cpp

double vector::myfn () {

}




Using Multiple Code & Header Files

* To compile: g++ Main.cpp Vector.cpp
* Gotcha: The compiler will get upset if you include
a header file in multiple source code files. Fix:

#ifndef VECTORHEADERFILE
#define VECTORHEADERFILE
class vector{
public:
double x, y;
double myfn () ;
}i
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15. Static Variables

v

class vector{
public:
double x,y;
static int s;
}

vector v, w, z;

<
=

[

/|

#endif
void myfn{ void myfn{
int s = 0; static int s = 0;
cout << s <<endl; cout << s <<endl;
st+; S++;
} }
void main () { void main () {
myfn () ; myfn () ;
myfn () ; myfn () ;
myfn () ; myfn () ;
} }

Output Output

16. Constants

#define PI 3.1415928

const double PI = 3.1415928;

17. Derived Classes

* A class can be derived from another class.
* The new class inherits the member variables
and member functions of the base class.

¢ Additional variables and/or functions can be
added.

Base Class Example

class vector{
public:

double x, y;

vector (double a=0, double b=0) {
X =a; y = b;

}

double module () {
return sqgrt (x*x + y*y);

}




Derived Class Example
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class trivector: public vector({
public:
double z;
trivector(
double m=0, double n=0, double p=0): vector(m, n){
z = p;

}
trivector (vector a){
X = a.x; y=a.y; z=0;
}
double module () {
return sqrt(x*x + y*y + z*z);

}

18. Virtual Functions

virtual double module () {
return sqrt (x*x + y*y);

vector* vptr; }
trivector t(1,1,1);

vptr = &t;
cout << vptr->module();

19. Public, Private, and Protected

Public: accessible from everywhere.

Private: accessible only from member functions
of the class but not derived classes.

Protected: accessible only from member
functions of the class and derived classes.

20. File Input and Output

using namespace std;

#include <iostream>

#include <fstream>

int main () {
fstream f;
f.open("test.txt", ios::out);
f << "Text output to a file." << endl;
double a = 345;
f << "A number: " << a << endl;
f.close();
return O;

Output File Contents

> cat test.txt
} Text output to a file.

A number: 345

using namespace std;
#include <iostream>
#include <fstream>
int main () {
fstream f;
char c;
cout << "What's inside test.txt?" << endl;
f.open ("test.txt", ios::in);
while (!f.eof ()) {
f.get(c);
cout << c;
}
f.close();
return 0; What's inside test.txt?"
} Text output to a file.
A number: 345




