An Introduction to
The Arcane Mysteries of

The Black Arte of Program Debugging

Adapted from lan Parberry
University of North Texas

Contents of This Lecture

Introduction

Debugging Tools
Debugging with Printf
Other Debugging Methods

A w NP

INTRODUCTION

A Taxonomy of Bugs

1. Your program crashes.
2. Your program does the wrong thing.

Notice that failing to compile is not a bug.

Historical Note

* The term bug is usually attributed to Admiral
Grace Murray Hopper in 1947.

* When colleagues traced a fault in Harvard
University’s Mark Il Computer to a moth stuck
in Relay 70 in Panel F, she remarked that they
were “debugging” the system.

* The remains of the moth can still be seen in
the log book...

061 Oakon M {m.m 9.037 w7 05
/000 shpd - onghom S i 9087 §YC 295 ik
1500 o) me me EVSTERL ceod) 4015 5250550
639 PRO> 2. 13oya0ys
cov ek 2.30e7¢m%

Ret ¢7° ?\\ ne (F

\MuTk).n n ela 94"

il

F:\\';.T ‘J\d‘na‘l ":_q‘;;_ 'o~{ bu:‘ L.:.n‘ {oqnl.

v R g

Theodore Rubin: The problem is not that there
are problems. The problem is expecting
otherwise and thinking that having problems is
a problem.

Will You Have Bugs?

The problem is not that there
are bugs. The problem is
expecting otherwise and
thinking that having bugs is a
problem.

An average programmer
generates 15-50 bugs per 1000
lines of code.

Steve McConnell
Code Complete

Section 2

DEBUGGING TOOLS

Debuggers

* There are specialized debugging tools for
programmers, for example, the Gnu
Debugger gdb on Unix.

* These let you interrupt the computation
and examine the contents of memory.

* They are good for catching low-level
bugs, but often the big picture is hidden
by too much information (aka “can’t see
the wood for the trees”).

Dbugging 2. Debugging Tools 11

Using the Gnu Debugger

Compile with the —g switch so that the compiler
generates extra information for the debugger to
use. For example,
> gt++ —-g progl.cpp
To run the debugger:
> gdb a.out

About the Gnu Debugger

gdb has an interactive shell.

It can recall history with the arrow keys, auto-
complete words (most of the time) with the
TAB key, and has other nice features.

If you’re ever confused about a command or
just want more information, use the help
command, with or without an argument:

(gdb) help [command]

Debugging 2. Debugging Tool

Using gdb

* To run the program, just use:
(gdb) run

 If it has no serious problems (i.e. the normal program didn’t
get a segmentation fault, etc.), then the program should
run fine here too.

* If the program did have issues, then you (should) get some
useful information like the line number where it crashed,
and parameters to the function that caused the error:

Program received signal SIGSEGV,
Segmentation fault. 0x0000000000400524 in
sum array region (arr=0x7ff£fc902a270,
rl=2, cl=5, r2=4, c2=6) at sum-array-
region2.c:12

Debugging 2. Debugging Tool 4

Setting Breakpoints

Breakpoints can be used to stop the program run
at a designated point in the code.

The simplest way is the command break, which

sets a breakpoint at a specified file-line pair:
(gdb) break filel.cpp:6

This sets a breakpoint atline 6 of filel.cpp.

Now, if the program ever reaches that location
when running, the debugger will pause and
prompt you for another command.

Debugging 2. Debugging Tools

Fun With Breakpoints

* Once you’'ve set a breakpoint, you can try using
the run command again. This time, it should
stop where you tell it to (unless a fatal error
occurs before reaching that point).

* You can proceed onto the next breakpoint by
typing continue.

You can single-step (execute just the next line of
code) by typing step. This gives you really fine-
grained control over how the program proceeds.

Debugging 2. Debugging Tools

Querying Variables

* So far you've learned how to interrupt
program flow at fixed, specified points, and
how to continue stepping line-by-line.

* However, sooner or later you’re going to want
to see things like the values of variables, etc.

* The print command prints the value of the
variable specified, and print/x prints the
value in hexadecimal:

(gdb) print myvar

Debugging 2. Debugging Tools

Watchpoints

* Whereas breakpoints interrupt the program at a
particular place in the code, watchpoints
interrupt the program whenever a watched
variable’s value is modified.
For example, suppose we do this:

(gdb) watch myvar
Now, whenever myvar’s value is modified, the
program will interrupt and print out the old and
new values.
* Whichmyvar? The one that’s currently in scope.

Debugging 2. Debugging Tools

Other Useful Commands

backtrace - produces a stack trace of the
function calls that lead to a segmentation fault

where - same as backtrace; you can think of
this version as working even when you're still in
the middle of the program

finish - runs until the current function is finished
delete - deletes a specified breakpoint

info breakpoints -shows information about
all breakpoints

For more information, RTFM.

Debugging 2. Debugging Tools 19

Debugging in Visual Studio €@®

* Compile in Debug mode (equivalent to —g)

» Set breakpoints by right-clicking on a line in
the code and selecting Breakpoint from
the menu.

* When you run your program, the IDE will stop
your code at the breakpoint and display local
variables, etc.

Debugging 2. Debugging Tools 20

., nCrdshow);

Local Variables

o B8 Autor [[Treac B8 Mocuies 8 it 55 i Rests

2. Debugging Tools 21

Debugging Hardware

Closed platforms such
as game consoles
have development
kits with a custom
debug version of the
hardware.

Debugging 2. Debugging Tools 22

The Primary Debugging Tool

sensorimotor area

auditory

auditory association
Gincluding Wernicke's
area,in left hemisphere)

Debugging 2. Debugging Tools 23

Section 3

DEBUGGING WITH PRINTF

Debugging 3. Debugging with 24

How to Debug a Crashed Program

* What do you do when your program crashes?

* Experiment with your program and think.

* Try to get some idea about where in the code the
crash occurs, if you can.

The first task is to reproduce the bug - find a series of
actions that is guaranteed to make the bug occur
every time.

That should give you some clue as to where the bug
might be.

Debugging 3. Debugging with

Aside: Reproducing the Bug m

* Reproducing bugs can be difficult.
* Some bugs are not easily reproducible.

* In your professional life you may have a
Quality Assurance (abbreviated QA) team
tasked with finding bugs.

* But they may not tell you how to reproduce it.

* Knowing how to reproduce it may tell you
enough about the bug to figure out what'’s
causing it.

Debugging 3. Debugging with

How to Debug... Continued

» Start by adding print fs that output messages on
function entry and exit.

Do this for the suspicious functions - or all of them if
you have to.

* Look at the output file after your program crashes. If
you see an Entering function foo ()
message and no Exiting function foo ()
message, then you know where the crash occurred.

Debugging 3. Debugging with 27

How to Debug... Continued

* When you've found the function in which the crash
occurred, add code to localize on which line it
happened.

* When you've found the line of code that's bad, add
code that prints out the values used on that line
before you get to it.

* Look at the values output immediately before the
crash. Think Hard. Are they right? If not, what should
they be? And how did they get to be bad?

Debugging 3. Debugging with 28

More Quotes

The Feynman Problem Solving Algorithm:

1. Write down the problem.
2. Thinkreal hard.
3. Write down the solution.

Albert Einstein: It's not that I'm so smart, it's just that | stay with
problems longer.

Voltaire: No problem can stand the assault of sustained thinking.

Norman Vincent Peale: When a problem comes along, study it
until you are completely knowledgeable. Then find that weak
spot, break the problem apart, and the rest will be easy.

Debugging 3. Debugging with

E Debug Output

* Output to the debugger is good. But what if your
program crashes the debugger? Or the 0S?

* Output to a file is good. But it can be annoying to have to
reopen it every time after you run your program.

* Neither of these is real-time.

* Output to a remote debugger on another computer is
good. You get output in real time. But it is ephemeral.

* You'll want to use all three at some point in your
professional life.

Debugging 3. Debugging with

——
Wi 2\
Warnings P ““
8 (S /“%

* There are some bugs that can't be caught with
debug printfs-in particular, bugs in timing
and scheduling of multithreaded processes.

* Adding debug output will slow down your
program and change its execution profile,
which may make the bug go away. Try using
as few debug outputs as possible.

Debugging 3. Debugging with 31

Segmentation Faults

* Your program is trying to access a location in
memory that it can not access.

* Often segfaults are related to NULL pointers:
— e.g. try to assign a value to a non-existing object
int *some_pointer = NULL;
*some_pointer = 5;
* Arecursive program without a basis case will
eventually cause a stack overflow, i.e. it tries to
use more memory than has been allocated to it.

Debugging 1. Introduction 32

What To Do About Segfaults

 Start adding “printf” (or “cout” for C++)
statements backwards from the point were the
segfault occurred to determine the contents of
your variables.

* Systematically run your program for “basic” input
if applicable.

— Eventually you will find which variable does not
contain the expect content.

— Keep backtracking from there until you find the code
where the problem is caused.

Debugging 1. Introduction 33

Section 4

OTHER DEBUGGING METHODS

Debugging 4. Other Debugging Methods 34

Defensive Programming

* Test for pre-conditions even when
you know they’re going to be true
(‘cos you made it so).

* Write your code in small chunks
and debug each chunk before
moving on to the next one.

* Keep old versions. Use a Revision
Control System (RCS) to keep
track of them.

Debugging 4. Other Debugging Methods 35

Diff

[Coor . ==

File Edt View Expand Options Mark Help
| Agamerenderer.cpp/W:AClass\Fall 2011\CSCE 4210 Fall 2011iNed DemosiNed Code 2010\Demo08 :
183 -

184 747 Compose menu frame.

185 777 Conpose a frame of menu screen animation. This is just the but
185 177 now, but we could add a glitzy animation if we wished.
187

M > BOOL CGameRenderer ::ConposeHenuFrane (LPDIRECT3DTEXTURES menutextur
189 n_d3ddevice->BeginScene(); //set vertex buffer to background
190 n i

0, sizeof (BIl
]

1
192) [n
193 SetuorldHatrix(0.0F); =
| 194 SetUieuHatrix((Float)g_nScreenwtidth, (float)g_nScreenHeight, -=
|| 15 n_d3ddevice->DrawPrinitive(D3DPT_TRIANGLESTRIP, 2, 2)
196 g_pInputianager-—>DrauButtons(); //draw buttons on screen
197 n_d3ddevice->EndScene()
198 return TRUE;
199 3 //ComposelienuFrane
200
201 71/ Process a frane of animation of menu screen. <
< i '

Debugging 4. Other Debugging Methods 36

Diff Makes all the Difference

e diff is a Unix utility that compares two
text files and tells you where they differ.

* Run diff on the latest two versions of
your code to see what has changed.

* Selectively comment out new code until
the bug goes away.

* This can take quite a lot of time.

Debugging 4. Other Debugging Method:

The Facepalm Method: Social Debugging

* Walk through your code line by line
with another person, explaining it as
you go along.

* Nine times out of ten you will spot the
bug yourself and be horribly
embarrassed by it.

* Never underestimate the power of
embarrassment as a debugging tool.

This works best with somebody you *‘Q
would prefer to impress.

Debugging 4. Other Debugging Method:

Distractions L

During the long and arduous debugging

process, you will be tempted to stop for

coffee, procrastinate, go on Facebook, do

other things.

* Your manager will probably think that you
aren’t making any actual progress.

* However, the unconscious part of your

brain is always on the job.

* Keeping the conscious part of your ""“”“:’f‘"“”'”"’ .
brain distracted can actually help L R
the unconscious part work on the — =

problem.

It’s Elementary %

* Emulate Sherlock Holmes: Gather evidence
and use logic.

* “When you have eliminated the impossible,
whatever remains, however improbable, must
be the truth.”

* You are a truly a professional programmer
when your bugs take:

— 3 days to find
— 30 seconds to fix

Debugging Other Debugging Methods

DOUGLAS
ADAMS

Boundary Conditions ®

MOSTLY
HARMLESS

We all like to congregate at boundary
conditions. Where land meets water. Where
earth meets air. Where bodies meet mind.
Where space meets time. We like to be on one
side, and look at the other.

Douglas Adams
Mostly Harmless

Types of Boundary Condition

Bugs like to collect around boundary conditions,
so start looking there first. These include:

* The first time around a loop.
* The last time around a loop.

* The code following a loop.
* The code at the start of a function.
* The code after a function returns.

Pre- and Post-Conditions

For each unit of code (block, function, loop):

* Are the pre-conditions met? That is, are the
conditions required for its correct execution
hold at the time of execution?

* Does it meet the post-conditions? That is,
does it meet the conditions required for the
correct execution of subsequent code?

The Trace

* Grab a pencil and paper and pretend to be a
computer executing your program.

* Itis a method of desperation because it is so
time-consuming and tedious.

* Let’s try it on a simple function to compute
Fibonacci numbers.

Fibonacci Numbers

* The first two Fibonacci
numbers are 0 and 1.

* From then on, the next
Fibonacci number is the sum of
the previous two.

0,1,1,23,5,8,13..
* Count them starting at 0, so

for example, the 4t Fibonacci
number is 3.

Computing Fibonacci Numbers

int fib(int n) {

if(n <= 0) return 0; else{
int a =0, b =1, c;
i

return b;
}
}

Debugging Other Debugging Method:

Trace of Fibonacci Numbers Code

B [int fib(int n)

if (n<=0) return 0;
else(

int a=0, b=1, c;

n[a4]

for (int i=2; i<=n, i++) { a[::::::::
c=atb; a=b; b=c; k)[:::::::]
Leturn b; C[:::::::]
il]

[]

}

}

Trace of Fibonacci Numbers Code

B [int fib(int n)(
if (n<=0) return 0; n[4]
else(
int a=0, b=1, c; a[:::::::]
for (int i=2; i<=n, i++) {
E=aib: Ay bicr bl]
}
return b; C[:::::::]
}
il]

}

Trace of Fibonacci Numbers Code

- lﬁ(iizﬁnieizxén 0; n
ei::{gzo,vbzl,lc; i aE
LA T s
retura b;]
il]

]

}

}

Trace of Fibonacci Numbers Code

int fib(int n) {
if (n<=0) return 0;

else(
- int a=0, b=1, c;
for (int i=2; i<=n, i++) {
c=atb; a=b; b=c;
}
return b;

}

}

) I0E:

return

Trace of Fibonacci Numbers Code

int fib(int n) {
if (n<=0) return 0; n
else(

i

int a=0, b=1, c; a
- for (int i=2; i<=n, i++) {
c=a+tb; a=b; b=c:' b
}

return b; C

} \
) il 2]
return[::::]

Debugging Dther Debugging Method

Trace of Fibonacci Numbers Code

int fib(int n) {
if (n<=0) return 0; n
else(
int a=0, b=1, c; a
for (int i=2; i<=n, i++) {
- c=a+b; a=b; b=c;
}
return b; C 1

o

} .
} 1

I

return

Debugging Dther Debugging Method

Trace of Fibonacci Numbers Code

i e SR n[_a_|
“int a=0, b=1, c; al 1]
st e
i‘eturn b; C

) i3]

Trace of Fibonacci Numbers Code

int fib(int n) {

if (n<=0) return O0; n
“int a=0, b=1, c; a1]
mp| T T b2
i‘eturn b; C
)’ i a |
return[::::]

Trace of Fibonacci Numbers Code

int fib(int n) {
if (n<=0) return 0; n
else(

int a=0, b=1, c; a

B)| for(int i=2; i<cn, i+4){ o 3 1

c=atb; a=b; b=c;
}

return b; Cc
: [4]
L 1]

HI

} i

return

Trace of Fibonacci Numbers Code

int fib(int n) {

if (n<=0) return 0; n
else(
int a=0, b=1, c; a2 |

i<=n, 1i++){

for (int i=2;
- ozzzﬁb;lazb; b=c; b

1}:eturn b; C
)’ il s]
returnz

Trace of Fibonacci Numbers Code

int fib(int n) {
if (n<=0) return O; I’III|
eiz:{gzo, b=1, c;) a
| ot iz S MU T
1}:'eturn b; C|I|
il 5]
[]

}
}

More Debugging Methods

Exceptions
Assertions
Logging
Post-mortem

<\

DON'T PANIC

