
CSCE 1040 Syllabus	

Instructor: Philip Sweany	

Office: NTDP F262	

Office Hours: Monday and Wednesday, 1:30 – 3:15; Tuesday, 1:45 – 3:45	

Email: sweany@cs.unt.edu	

	

Textbook:

 Adam Hoover’s	

 System Programming in C	

 Addison-Wesley, 2010; ISBN: 0-13-606712-03	

	

Course Description:	

CSCE 1040, the second course in the introductory sequence, focuses on more
advanced C programming, designing and implementing larger software projects,
introduction to dynamic data structures, and a brief introduction to C++ I/O and
classes. The main focus is on developing students’ software development skills.

Course Outcomes: 	

Course outcomes are measurable achievements to be accomplished by the
completion of a course. These outcomes are evaluated as part of our ABET
accreditation process.

1. Write readable, efficient, and correct C programs that include
programming structures such as assignment statements, selection
statements, loops, arrays, pointers, both standard library and user-defined
functions, dynamic memory allocation and deallocation, any subset of C’s
rich set of operators and multiple header (.h) and code (.c) files.

2. Design and implement recursive algorithms in C.
3. Describe the concept of an abstract data type (ADT).
4. Use a combination of interactive and recursive design and implementation

techniques to implement and use dynamically-allocated data structures in
developing C applications.

5. Use a symbolic debugger to find and fix runtime and logical errors in C
software.

6. Using a software process model, design and implement a significant
software application in C. Significant software in this context means a
software application containing at least five files, tens of functions and a
makefile.

7. Implement, compile and run a small C++ program that includes a class
definition and a main function to test the functionality of that class.

Policies:	

• All programs are due at 11:59pm on the due date.	

• No late programs will be graded	

• All programs will be submitted through the Praktomat submission system.	

• Except for the start of the term, attendance will not be taken in lecture. However,

your attendance is strongly recommended to improve your opportunity to meet
course outcomes	

	

Grading: The components of your grade will be weighted as follows:	

• 1 midterm exam, 20%	

• 1 final exam, 25%	

• Multi-week programming assignments, 30%	

• Lab exercises and “minor assignments”, 25%	

	

Make-Up Policy:	

	

There will be no make-up exams, labs, or programs given in this class. However, for
documented excused absences or emergencies on a day of an exam or a lab the exam
and/or lab grades will be replaced by an average of the other exam or lab scores. There is
one exception to this rule. Under NO circumstances will more than one exam or lab
score be replaced by an average of the other scores. For a second missed exam or lab,
even if all are excused, students will receive a 0 for the missed work.	

Excused Absences	

Students are expected to schedule routine appointments and activities so as not to

conflict with attending class. However, some absences cannot be prevented. In the event of a
medical emergency or family death, students must request an excused absence as quickly as
feasible following the emergency. Use common sense. Students must provide documentation
that verifies an emergency arose. 	

Emergencies	

By definition, emergencies cannot be planned for. Your instructor attempts to make

accommodations in these instances that allow for making up missed work and completion of
the course in a timely manner. Among these emergencies are 	

• A death in your immediate family 	

• An accident or illness requiring immediate medical treatment and where a doctor

has indicated attending class is impossible or inadvisable.	

• Employees who are on call 24/7 fall in this category but must document that they

were called during a scheduled class. 	

	

Collaboration and Cheating:

For minor assignments and labs (if any) I encourage collaboration among students
(and faculty?) as I believe that it provides a better learning environment. And the

main goal of the minor assignments is to give students an opportunity to sharpen
their software engineering capabilities. However, simply copying someone else’s
program solution will not help achieve that goal. And, it will, almost surely,
cripple your ability to complete the major programs. A good criteria for
identifying “helpful” collaboration is that you can design programs and even share
programming tips in a group, but once you’ve done that and then moved on to
something else for at least 24 hours, you should be able to write the program on
your own.

However, on major programs, you should work alone. Do NOT work with other
students on shared program solutions. Do NOT get help with algorithms or
coding from anyone other than Dr. Sweany or the TAs. Do NOT use even partial
program solutions from the internet. Failure to adhere to these strict standards will
be cause for disciplinary action that could be as severe as expulsion from the
university.
	

It IS permissible to obtain help from whoever you wish to fix syntax errors. And
we will be discussing in class the different types of errors that occur in programs
so there will be ample opportunity for you to learn the difference between syntax
and other errors. But remember, for anything but syntax errors, getting
programming assistance from any source other than Dr. Sweany or the TAs will
be considered cheating and dealt with harshly.

And, of course you need to do your own work on quizzes and exams as well. Here
there should be no ambiguity at all.

In case the above description, and in-class discussion of my views on appropriate
and inappropriate collaboration does not answer all of your questions, please look
at the university Student Rights and Responsibilities web page.
	

SETE	

The Student Evaluation of Teaching Effectiveness (SETE) is a requirement for all
organized classes at UNT. This short survey will be made available to you at the
end of the semester, providing you a chance to comment on how this class is
taught. I am very interested in the feedback I get from students, as I work to
continually improve my teaching. I consider the SETE to be an important part of
your participation in this class.
	

ADA	

UNT complies with all federal and state laws and regulations regarding
discrimination, including the Americans with Disability Act of 1990 (ADA). If
you have a disability and need a reasonable accommodation for equal access to
education or services please contact the Office of Disability Accommodation. 	

TENTATIVE Schedule and Topics	

Week	
 Topic	
 Reading	
 Program 	

8/29/12	
 Introduction	
 Chapter	
 1	
 	

9/10/12	
 Data	
 Representation	
 Section	
 2.1	
 	

9/17/12	
 Bitwise	
 Operations	
 Sections	
 2.2-­‐2.3	
 	

9/24/12	
 Arrays	
 and	
 Strings	
 Sections	
 3.1-­‐3.3	
 Major	
 Pgm	
 1;	
 	
 9/28/12	

10/1/12	
 Command	
 Line	
 Args	
 Section	
 3.4	
 	

10/8/12	
 Pointers	
 Sections	
 4.1-­‐4.2	
 	

10/15/12	
 Structures	
 Sections	
 4.3-­‐4.4	
 	

10/22/12	
 Midterm Exam 	
 	
 Major	
 Pgm2;	
 	
 10/26/12	

10/29/12	
 Input/Output	
 Sections	
 5.1-­‐5.5	
 	

11/5/12	
 Program	
 Organization	
 Sections	
 6.1-­‐6.2	
 	

11/12/12	
 Makefiles	
 Sections	
 6.1,	
 6.3	
 Major	
 Pgm3;	
 	
 11/16/12	

11/19/12	
 Lists	
 Online	
 Material	
 	

11/26/12	
 Lists,	
 G++	
 	
 Online	
 Material	
 	

12/3/12	
 G++	
 	
 Classes	
 Online	
 Material	
 Major	
 Pgm4;	
 	
 12/6/12	

12/10/12	
 Finals	
 	
 	

	

 	

